Ultrafast relaxation dynamics of a biologically relevant probe dansyl at the micellar surface.
نویسندگان
چکیده
We report picosecond-resolved measurement of the fluorescence of a well-known biologically relevant probe, dansyl chromophore at the surface of a cationic micelle (cetyltrimethylammonium bromide, CTAB). The dansyl chromophore has environmentally sensitive fluorescence quantum yields and emission maxima, along with large Stokes shift. In order to study the solvation dynamics of the micellar environment, we measured the fluorescence of dansyl chromophore attached to the micellar surface. The fluorescence transients were observed to decay (with time constant approximately 350 ps) in the blue end and rise with similar timescale in the red end, indicative of solvation dynamics of the environment. The solvation correlation function is measured to decay with time constant 338 ps, which is much slower than that of ordinary bulk water. Time-resolved anisotropy of the dansyl chromophore shows a bi-exponential decay with time constants 413 ps (23%) and 1.3 ns (77%), which is considerably slower than that in free solvents revealing the rigidity of the dansyl-micelle complex. Time-resolved area-normalized emission spectroscopic (TRANES) analysis of the time dependent emission spectra of the dansyl chromophore in the micellar environment shows an isoemissive point at 21066 cm-1. This indicates the fluorescence of the chromophore contains emission from two kinds of excited states namely locally excited state (prior to charge transfer) and charge transfer state. The nature of the solvation dynamics in the micellar environments is therefore explored from the time-resolved anisotropy measurement coupled with the TRANES analysis of the fluorescence transients. The time scale of the solvation is important for the mechanism of molecular recognition.
منابع مشابه
Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملUltrafast surface solvation dynamics and functionality of an enzyme alpha-chymotrypsin upon interfacial binding to a cationic micelle.
In this contribution we report studies on enzymatic activity of alpha-chymotrypsin (CHT) upon complexation with cationic cetyltrimethylammonium bromide (CTAB) micelle. With picosecond time resolution, we examined solvation dynamics at the interface of CHT-micelle complex, and rigidity of the binding. We have used 5-(dimethyl amino) naphthalene-1-sulfonyl chloride (dansyl chloride; DC) that is c...
متن کاملSeparation of Biojenic Amines Using Dansyl Cloride Derivatization and Mixed Micellar Liquid Chromatography
Separation of some biogenic amines via RP-HPLC using mixed micellar mobile phase was investigated. The compounds were derivatized before hand by dansyl chloride as a chromophoric reagent. Appropriate conditions for separation, were determined by studying factors such as temperature, type and percentage of organic modifier, concentration of surfactants (SDS and Brij-35) and the pH of the mob...
متن کاملVibrational dynamics of ice in reverse micelles.
The ultrafast vibrational dynamics of HDO:D(2)O ice at 180 K in anionic reverse micelles is studied by midinfrared femtosecond pump-probe spectroscopy. Solutions containing reverse micelles are cooled to low temperatures by a fast-freezing procedure. The heating dynamics of the micellar solutions is studied to characterize the micellar structure. Small reverse micelles with a water content up t...
متن کاملUltrafast photoinduced deligation and ligation dynamics: DCM in micelle and micelle-enzyme complex.
We report studies on diffusion controlled deligation and ligation dynamics of a probe ligand 4-(dicyanomethylene)-2-methyl-6-(p-dimethylamino-styryl) 4H-pyran (DCM) with cationic cetyltrimethylammonium bromide (CTAB) micelles. In order to investigate the effect of spatial heterogeneity on the dynamics we study the DCM labeled micelle upon complexation with an enzyme alpha-chymotrypsin (CHT). Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of photochemistry and photobiology. B, Biology
دوره 78 2 شماره
صفحات -
تاریخ انتشار 2005